28. A method according to claim 26 wherein R_{12} is optionally substituted imidazolinyl- having the formula: $$R_{14}$$ R_{10} R_{10} ## wherein R₁₄ is lower-alkyl; phenyl-; or phenyl- substituted with one or more of the following groups: methyl, methoxy, trifluoromethyl, or halo; and $R_{10},\,R_{10},\,R_{11},\,$ and R_{11} are independently hydrogen or optionally substituted $C_1\text{-}C_4$ alkyl-. **29**. A method according to claim 26 wherein R_{12} is —NHR₄; and R_4 is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaralkyl-, and optionally substituted heterocyclyl-. **30**. A method according to claim 26 wherein R_3 is selected from hydrogen, optionally substituted alkyl-, optionally substituted aralkyl-, optionally substituted heteroaralkyl-, optionally substituted heteroaryl-, optionally substituted aryl-, $R_{15}O$ — and R_{17} —NH—, wherein R_{15} is chosen from optionally substituted alkyl and optionally substituted aryl and R_{17} is chosen from hydrogen, optionally substituted alkyl and optionally substituted alkyl and optionally substituted aryl. **31.** A method according to claim 30 wherein R_4 is is R_{16} -alkylene-, and R_{16} is chosen from alkoxy, amino, alkylamino, dialkylamino, carboxy, hydroxyl-, and N-heterocyclyl-. 32. A method according to claim 31, wherein R_4 is chosen from hydrogen, optionally substituted alkyloptionally substituted aryloptionally substituted aralkyloptionally substituted heteroaralkyloptionally substituted heterocyclyloptionally arkyloptionally substituted heterocyclyloptionally R₃ is selected from optionally substituted alkyl-; aryl-; substituted aryl-; benzyl-; and optionally substituted heteroaryl-. **33**. A method according to claim 32, wherein R_3 is tolyl-, halophenyl-, halomethylphenyl-, hydroxymethylphenyl-, methylenedioxyphenyl-, formylphenyl or cyanophenyl-. **34.** A method according to claim 26, wherein R_{12} is $-N(R_4)(CH_2R_{3h})$; R_4 is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaralkyl-, and optionally substituted heterocyclyl- and R_{3b} is chosen from phenyl substituted with one or more halo, methyl-, cyano, trifluoromethyl-, trifluoromethoxy, carboxy, or methoxycarbonyl groups; piperidinyl-; and naphthyl-. 35. A method according to claim 1, wherein R_{12} is —NR₄(SO₂R_{3a}); R_4 is chosen from hydrogen, optionally substituted alkyloptionally substituted aryloptionally substituted aralkyloptionally substituted heteroaralkyloptionally substituted heterocyclyloptionally arkyloptionally substi R_{3a} is chosen from phenyl substituted with halo, lower-alkyl-, lower-alkoxy, cyano, nitro, methlenedixoy, or trifluoromethyl-; and naphthyl-. **36.** A method according to claim 1, wherein R_2 and R_2 are each attached to a stereogenic center having an R-configuration. 37-48. (canceled) * * * * *